
dicthandling
Release 0.2

Oct 09, 2020

Contents:

1 General 3

2 Accessing 5

3 Creation 9

4 Configparser related functions 11

5 Storing and reading with the json module 13

Index 15

i

ii

dicthandling, Release 0.2

Dicthandling contains convenient methods to work with nested dictionaries.

Using print_tree() returns a pretty print of a nested dictionary, which you may find more readable than the
standard output.

Further functions of this module are

• for accessing data

– get_leaf() gets an item at an address

– set_leaf() sets an item at an address

– update_only_values()

– add_missing_branches()

– overlap_branches()

– join_address()

• for creating nested dictionaries

– get_unused_key() gets a key which is not in the existing dictionary

– unfold_branch() creates a nested dictionary on base of an address

• Configparser related functions

– flatten()

– deep_flatten()

– unflatten()

– deep_unflatten()

• for storing and reading with the json module

– put_into_json_file()

– read_from_json_file()

Contents: 1

dicthandling, Release 0.2

2 Contents:

CHAPTER 1

General

dicthandling.print_tree(data: dict, max_itemlength: int = 40, hide_leading_underscores: bool =
False, indent: str = ’..’, starting_indent: str = ”, hide_empty: bool = False)

Prints a pretty representation of a nested dictionary.

Examples

>>> data = {'a': {'b': 'c', 'd': 'e', 'f': ['g', 'h']}}
>>> print_tree(data)
[a]:
..b: c
..d: e
..f: ['g', 'h']
>>> data = [{'a': {'b': 'c'}}, {'d': ['e', 'f']}]
>>> print_tree(data)
[0]:
..[a]:
....b: c
[1]:
..d: ['e', 'f']
>>> data = {'a': 'b', 'c': None, 'd': 'e', 'f': ''}
>>> print_tree(data, hide_empty=True)
a: b
d: e
>>> data = [{'a': 'b', 'c': None, 'd': 'e'}, {'f': '', 'g': {}, 'h': []}]
>>> print_tree(data, hide_empty=True)
[0]:
..a: b
..d: e
[1]:
..[g]: {}
>>> print_tree(
... {"This position": "->Nothing<- should be cut from this extra long string."}
...)

(continues on next page)

3

dicthandling, Release 0.2

(continued from previous page)

This position: ->..<- should be cut from this extra long string.
>>> print_tree({"remove": "trailing whitespaces "})
remove: trailing whitespaces

Parameters

• data (dict) – (Nested) dictionary which should be printed.

• max_itemlength (int) – maximum length of value item; if exceeded the value string
will be segmented. Default = 40

• hide_leading_underscores (bool) – if true all branches with leading underscores
will be hidden. default = False

• indent (str) – string which will be used for indentation. default = ‘..’

• starting_indent (str) – The intendation the tree starts with. default = ‘’

• hide_empty (bool) – Don’t prints empty fields of dictionaries, which are None, ‘’
(empty sequences). Empty dicitonaries will still be shown.

dicthandling.keep_keys(root: dict, keysToKeep: List[str])→ dict
Returns a dictionary with the given set of keys from root as a deep copy.

Parameters

• root (dict) – root-dictionary from which key-value pairs should be kept.

• [list of str] (keepingKeys) – Keys to be kept within the result.

Returns Deep copied dictionary.

Return type dict

4 Chapter 1. General

CHAPTER 2

Accessing

dicthandling.get_leaf(tree: dict, address: str)→ Optional[dict]
Returns the leaf of a address split by the FOLDING_KEY_DELIMITER. The address needs to be absolute.

A address is like: rootkey/leaf1key/leaf2key

Parameters

• tree (dict) – (Nested) dictionary from which a leaf shall be pulled.

• address (str) – The address of the leaf of the dict to pull.

Returns The dictionary item at the given ´´address´´. None if address not found.

Return type dict

dicthandling.set_leaf(tree: dict, address: str, leaf, forced: bool = False)→ dict
Updates the leaf of a address split by the FOLDING_KEY_DELIMITER. The address needs to be absolute. If
the address is not within the tree no changes will be performed by default.

A address is like: rootkey/leaf1key/leaf2key

Parameters

• tree (dict) – (Nested) dictionary in which a leaf shall be updated.

• address (str) – The address of the leaf of the dict to update.

• leaf (any type) – Item which shall be set to the address.

• forced (bool) – If ´´True´´ forces the leaf into the tree, by creating all necessary branches
and overriding existing within this branch. Default = True.

Returns Returns updated tree. If setting failed internally the original tree is returned.

Return type dict

dicthandling.update_only_values(destination: dict, items: dict)→ dict
Updates a destination-dictionary with key-pairs of items, if these are not None or empty.

Parameters

5

dicthandling, Release 0.2

• destination (dict) – Destination were the items should be put.

• items (dict) – items to be put into destination, if not None or empty.

Returns The destination dictionary.

Return type destination(dict)

dicthandling.add_missing_branches(targetbranch: dict, sourcebranch: dict)→ dict
Overlaps to dictionaries with each other. Only missing branches are taken from sourcebranch.

Parameters

• targetbranch (dict) – Root where the new branch should be put.

• sourcebranch (dict) – New data to be put into the rootBranch.

dicthandling.overlap_branches(targetbranch: dict, sourcebranch: dict)→ dict
Overlaps to dictionaries with each other. This method does apply changes to the given dictionary instances.

Examples

>>> overlap_branches(
... {"a": 1, "b": {"de": "ep"}},
... {"b": {"de": {"eper": 2}}}
...)
{'a': 1, 'b': {'de': {'eper': 2}}}
>>> overlap_branches(
... {},
... {"ne": {"st": "ed"}}
...)
{'ne': {'st': 'ed'}}
>>> overlap_branches(
... {"ne": {"st": "ed"}},
... {}
...)
{'ne': {'st': 'ed'}}
>>> overlap_branches(
... {"ne": {"st": "ed"}},
... {"ne": {"st": "ed"}}
...)
{'ne': {'st': 'ed'}}

Parameters

• targetbranch (dict) – Root where the new branch should be put.

• sourcebranch (dict) – New data to be put into the sourcebranch.

dicthandling.ADDRESS_DELIMITER
Delimiter by which parts of a path within a dictionary are separated.

dicthandling.join_address(address: Union[str, int], *addresses)→ str
Join one or more address components. The return value is the concatenation of address and any members of
*addresses

Parameters

• address (Union[str, int]) – root address of the path

• *addresses – address parts to be concatenated.

6 Chapter 2. Accessing

dicthandling, Release 0.2

Returns Address within the dictionary.

Return type str

7

dicthandling, Release 0.2

8 Chapter 2. Accessing

CHAPTER 3

Creation

dicthandling.get_unused_key(root: dict, key: str)→ str
Returns a not used key with addition of ‘ (i)’ within root based on the given key, if key already exists within this
database.

Parameters root (dict) – Root dictionary to put the key in.

Returns First occurrence of non existing key with a postfix of ‘ (i)’ if necessary, else given key.

Return type str

dicthandling.unfold_branch(address: str, leaf: Optional[dict] = None)→ dict
Creates a branch by given address separated by FOLDING_KEY_DELIMITER.

Parameters

• address (str) – Address of keys of the branch

• (Optional[dict] (leaf) – leaf of the branch to put in. Default = None

Returns Nested dictionary based on given address and leaf.

Return type dict

9

dicthandling, Release 0.2

10 Chapter 3. Creation

CHAPTER 4

Configparser related functions

dicthandling.flatten(data: dict, parentkey=None)→ collections.OrderedDict
Flattens a nested dictionary containing dictionaries to a single dictionary, where all items are flat dictionaries.
Top level items will of the root dictionary be put into a dictionary at the key ‘root’.

Parameters

• data (dict) – dictionary to be flatten

• parentkey (string) – Key of the parent dictionary. Default is None

Returns Ordered dictionary with a depth of 2.

Return type collections.OrderedDict

Raises ValueError – If data is not a dictionary.

Example: A nested dicionary like ..

root
|- comment : "toplevel item"
|- project : { }

|- editor : Fry
|- year : 4029
|- custumor : Planet Express
|- paths : { }

|- rawdatapath : "/tmp/here"
|- processedpath : "/tmp/there"

will be converted into ..

root
|- DEFAULT : { }
| |- comment : "toplevel item"
|
|- project : { }
| |- editor : Fry

(continues on next page)

11

dicthandling, Release 0.2

(continued from previous page)

| |- year : 4029
| |- custumor : Planet Express
|
|- project/paths : { }

|- rawdatapath : "/tmp/here"
|- processedpath : "/tmp/there"

dicthandling.deep_flatten(data: dict)→ collections.OrderedDict
Flattens a nested dictionary containing dictionaries to a single dictionary. Top level items will remain at root.

Parameters

• data (dict) – dictionary to be flatten

• parentkey (string) – Key of the parent dictionary. Default is None

Returns Ordered dictionary with a depth of 1.

Return type collections.OrderedDict

Raises ValueError – If data is not a dictionary.

dicthandling.unflatten(data: dict)→ collections.OrderedDict
Creates a branch by given folded root dictionary with folded keys seperated by FOLDING_KEY_DELIMITER.

Parameters data (dict) – root dictionary folded by flatten

dicthandling.deep_unflatten(root: dict)→ collections.OrderedDict
Reverses the result of deep_flatten returning a nested dictionary.

Parameters root (dict) – dictionary to be flatten

Returns Ordered dictionary with a depth of 1.

Return type collections.OrderedDict

12 Chapter 4. Configparser related functions

CHAPTER 5

Storing and reading with the json module

dicthandling.try_decoding_potential_json_content(bytelike_content, encod-
ing_format_tryouts: List[str] =
None)→ str

Tries to decode the given byte-like content as a text using the given encoding format types.

Notes

The first choice is ‘utf-8’, but in case of different OS are involved, some json files might been created
using a different encoding, leading to errors. Therefore this methods tries the encondings listed in dic-
thandling.ENCODING_FORMAT_TRYOUTS by default.

Examples

>>> from dicthandling import try_decoding_potential_json_content
>>> sample = '{"a": "test", "json": "string with german literals äöüß"}'
>>> sample_latin_1 = sample.encode(encoding="latin-1")
>>> sample_latin_1
b'{"a": "test", "json": "string with german literals äöüß"}'
>>> try_decoding_potential_json_content(sample_latin_1)
'{"a": "test", "json": "string with german literals äöüß"}'
>>> sample_windows = sample.encode(encoding="windows-1252")
>>> sample_windows
b'{"a": "test", "json": "string with german literals äöüß"}'
>>> try_decoding_potential_json_content(sample_windows)
'{"a": "test", "json": "string with german literals äöüß"}'

Parameters

• bytelike_content – The text as byte-like object, which should be decoded.

• encoding_format_tryouts – List[str]: Formats in which the text might be encoded.

Raises UnicodeDecodeError

13

dicthandling, Release 0.2

Returns Hopefully a proper decoded text.

Return type str

dicthandling.put_into_json_file(filepath: str, data: dict, address: str = None, **json_settings)
→ bool

Puts a dictionary into a existing json-file; if file does not exist it will be created then. Existing data within the
json file not intersecting with the given data will be preserved.

This method will use indent to pretty print the output and disables the ensure_ascii option of the json.dump
method to enable utf-8 characters.

Parameters

• filepath (str) – Filepath for the json data.

• data (dict) – data of type dict to be written into the json file.

• address (str, optional) – Additional address for the position within the preexisting
data.

• **json_settings (optional) – Additional settings for the json.dump command. De-
fault setting of this method are ensure_ascii = False and indent = ' '

Raises

• OSError – If the file cannot be opened.

• FileNotFoundError – If the file don’t exists or cannot be created.

dicthandling.read_from_json_file(filepath: str, address: str = None, **json_settings)→ dict
Reads an utf-8 encoded json-file returning its whole decoded content as a dictionary, if no address is supplied. If
the address does not exist within the content None will be returned, otherwise returning the item at the supplied
address.

Parameters

• filepath (str) – Filepath for the json data.

• address (str, optional) – Additional address for the position within the preexisting
data.

• **json_settings (dict, optional) – Additional settings for the json.dump com-
mand. Default setting of this method are ensure_ascii=False and indent=’ ‘

Returns content of requested address; None if address not found.

Return type Any

Raises

• OSError – If the file cannot be opened.

• FileNotFoundError – If the file don’t exists or cannot be created.

14 Chapter 5. Storing and reading with the json module

Index

A
add_missing_branches() (in module dic-

thandling), 6
ADDRESS_DELIMITER (in module dicthandling), 6

D
deep_flatten() (in module dicthandling), 12
deep_unflatten() (in module dicthandling), 12

F
flatten() (in module dicthandling), 11

G
get_leaf() (in module dicthandling), 5
get_unused_key() (in module dicthandling), 9

J
join_address() (in module dicthandling), 6

K
keep_keys() (in module dicthandling), 4

O
overlap_branches() (in module dicthandling), 6

P
print_tree() (in module dicthandling), 3
put_into_json_file() (in module dicthandling),

14

R
read_from_json_file() (in module dicthandling),

14

S
set_leaf() (in module dicthandling), 5

T
try_decoding_potential_json_content()

(in module dicthandling), 13

U
unflatten() (in module dicthandling), 12
unfold_branch() (in module dicthandling), 9
update_only_values() (in module dicthandling), 5

15

	General
	Accessing
	Creation
	Configparser related functions
	Storing and reading with the json module
	Index

